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CHAPTER 1

Kinematics

1. Preliminaries from tensor analysis

In this course we shall deal with vector and tensor fields on domains of the
three-dimensional Euclidean point space. Elements of E , called spatial points,
are denoted x, y, z . . .. In a chosen fixed cartesian co-ordinate system a point
x corresponds to a triple (x1, x2, x3), with xi being its i-th co-ordinate. The
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Figure 1. Cartesian co-ordinate system.

translation space of E is denoted by V ; it is a three-dimensional vector space.
Elements of V are called (spatial) vectors and are denoted with boldface letters
like u,v,w, . . .. Referring to the cartesian co-ordinate system any vector v can
be presented in the form

v = v1e1 + v2e2 + v3e3 = viei,

where ei (i = 1, 2, 3) are the standard basis vectors and vi (i = 1, 2, 3) are
called cartesian components of v. Figure 1 shows the position vector x that
can be identified with the point x. Unless otherwise specified we always use the
Einstein summation convention: summation on repeated indices is understood.

The scalar products of two vectors u,v ∈ V is defined as

u · v = |u||v| cosα,

5



6 1. KINEMATICS

where |u| is the magnitude of u and α denotes the angle between u and v. In
the cartesian co-ordinates

u · v = (uiei)·(vjej) = uivjei·ej,

and since
ei·ej = δij,

δij being the Kronecker delta, we have

u · v = uivi.

The vector product of two vectors u and v is defined as

u × v = |u||v| sinαn,

where n is a unit vector normal to the plane containing u and v. In the
cartesian co-ordinates

u × v = (uiei) × (vjej) = uivjei × ej,

and since
ei × ej = ǫkijek,

ǫkij being the permutation symbols, we obtain

u × v = ǫijkujvkei.

Now we define a vector field v(x) on a domain U ⊆ E as a map

v : U 7→ V .
This means that in every point x ∈ U there exists a vector v(x) ∈ V (see
Figure 2). Examples of such vector fields are displacement field, velocity field,

Figure 2. A two-dimensional vector field.

acceleration field etc. In the cartesian co-ordinate system specified above we
can refer a vector field v(x) to the basis {ei} as follows

v(x) = vi(x1, x2, x3)ei.

Functions vi(x1, x2, x3) are called cartesian components of the vector field v(x).
Except scalar and vector fields we need in continuum mechanics also tensor

fields. We define the tensor of second order as a bilinear map

T : V × V 7→ R
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The components of T referred to the basis {ei} are defined by

Tij = T(ei, ej).

The tensor T can also be presented as

T = Tijeiej,

where eiej denotes the dyadic (or tensor) product. Note that eiej 6= ejei for
i 6= j. The generalization of this definition to the tensors of higher order is
obvious. The set of all tensors of order p forms a tensor space denoted by
Tp(V). A tensor field of order p on the domain U ⊂ E is defined as a map
T : U 7→ Tp(V).

Given two tensors T and S of second order and a vector v, we define the
following inner products

T · v = (Tijeiej)·(vkek) = Tijvjei,

v · T = (viei)·(Tjkejek) = viTijej,

T · S = (Tijeiej)·(Sklekel) = TikSkjeiej.

Associate with the second-order tensor T there is a unique tensor TT , called
the transpose of T such that

TT = (Tijeiej)
T = Tijejei = Tjieiej.

The tensor T is called symmetric, if TT = T, and skew-symmetric, if TT =
−T. Obviously, the tensor T is symmetric (skew-symmetric) if and only if
Tij = Tji (Tij = −Tji). The inverse of T is defined as the tensor T−1 such
that T · T−1 = I, I being the identity tensor. We also define the trace of T by
trT = Tii and the double inner product of T and S by

T : S = tr(T · ST ) = TijSij.

The nabla (or gradient) operator ∇, in the cartesian co-ordinates, is defined
by

∇ = ei
∂

∂xi

= ei∂i,

where ∂i denotes the partial differentiation with respect to xi. When applied
to a scalar differentiable function f(x), it gives

gradf = ∇f = (ei∂i)f = f,iei.

So, it is the vector field with the components f,i, where the comma before
an index denotes the partial derivative with respect to the corresponding co-
ordinate. To a differentiable vector field u(x), this operator can be applied
from the left or from the right

∇u = (ei∂i)(ujej) = uj,ieiej,

u∇ = (uiei)(∂jej) = ui,jeiej.

Note the important rule of the nabla operator applied to vector or tensor
fields: first differentiate, and then take the dyadic product. As a result, we
get two different tensor fields of second order. However, it is easy to check
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that u∇ = (∇u)T . For any tensor field T we define the gradient and the
divergence of T by

gradT = T∇,

divT = T·∇.

For example, applying these differential operators to the tensor field of second
order we have

gradT = (Tijeiej)(∂kek) = Tij,keiejek,

divT = (Tijeiej)·(∂kek) = Tij,jei,

so, what we get is the tensor field of the third order and the vector field.
Let U be a domain in the Euclidean space E with a regular boundary ∂U ,

on which a smooth tensor field T is defined. Then Gauss’ theorem states

(1)

∫

U

divT dv =

∫

∂U

T · n da,

where dv and da are the volume and surface elements in E , respectively, and
n is the unit outward normal vector to ∂U . The proof of this theorem may be
found in any standard textbook on analysis.

Problem 1. Check that, for an arbitrary second-order tensor T and arbi-
trary vectors u and v the following identity

u · TT ·v = v · T · u
holds true.

Problem 2. Let f , v, and T be differentiable scalar, vector and tensor
fields. Show that

grad(fv) = fgradv + vgradf,

div(v · T) = gradv : T + v·divT,

div(fT) = T·gradf + fdivT.

2. Deformation

In continuum mechanics we deal with deformations of bodies (or continua).
Formally, a body B is a set of points, referred to as particles (or material
points), which can be put into one-to-one correspondence with some region of
the Euclidean 3-D point space E . As the body moves the region it occupies
changes continuously. At time t = 0 the body occupies the region B0 ⊂ E
called the initial configuration. Let X ∈ B0 denote the place of a generic
particle of B. We shall use X as the label of this particle. A motion of B is
a one-parameter family of mappings φ(., t) : B0 → Bt ⊂ E , where Bt is the
region occupied by the body at time t called current configuration. Then we
write

(2) x = φ(X, t),
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where x corresponds to the place occupied by the same particle X in the
current configuration Bt (see Fig. 3). We assume that φ is one-to-one at any
fixed time t, so the inverse of (2) at any fixed t exists

X = φ−1(x, t).

It identifies the particles which pass through x during the motion. Any field
quantity which depends on X and t can therefore be expressed as function
of x and t. Field quantities expressed in terms of (X, t) are said to be in
the Lagrangean (or referential) description. In contrary, the same field quan-
tities expressed in terms of (x, t) are said to be in the Eulerian (or current)
description.

f

0

t

Figure 3. Motion of a body in Euclidean space

In a fixed reference frame we can identify X and x with the position vectors
X and x. Therefore Eq. (2) can be written in the form

x = φ(X, t),

where φ(X, t) is a vector-valued function. Sometimes we prefer writing this
equation precisely in the component form

xi = φi(XA, t), i, A = 1, 2, 3,

where xi and XA denote cartesian coordinates of the position vectors x and X,
respectively. Capital letter indices are associated with X, small letter indices
are associated with x. In most cases we shall employ for simplicity cartesian
coordinates, but it is also not difficult to change to curvilinear coordinates (see
Problem 4).

X x

dX
dx

FG
g

Figure 4. Tangential vectors dX und dx
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We analyze now the deformation of the body at some fixed time t. Since t
is fixed we omit t in (2) for short and write

(3) x = φ(X).

Taking the differential of (3) we obtain

(4) dx = φ∇X ·dX = F·dX, F = φ∇X = Gradφ.

Here and later Grad and Div mean the gradient and the divergence with respect
to X, while grad and div are the similar differential operators with respect to
x. The second-order tensor F has the components FiA = ∂φi/∂XA = φi,A and
can also be presented in the matrix form as follows

F =





φ1,1 φ1,2 φ1,3

φ2,1 φ2,2 φ2,3

φ3,1 φ3,2 φ3,3



 .

The vector dX at the point X is the tangential vector of a material line in the
reference configuration B0. Eq. (4) describes how the tangential vector dX
of an arbitrary material line Γ at X transforms under the deformation to the
tangential vector dx of the same material line γ at the point x in the current
configuration B (Fig. 4). The transformation F is linear locally. The local
nature of the deformation is embodied in F, which is called the deformation
gradient.

dX

dX

dX
1

2

3

dV

Figure 5. Volume element of the parallelepiped whose edges
are dX1, dX2, dX3

We consider the change of volume and surface elements. Take three ar-
bitrary vectors dX1, dX2, dX3 at the point X in B0, which are not coplanar
(Fig. 5). We assume that the triad dX1, dX2, dX3 is positively oriented and
define

dV = dX1·(dX2 × dX3)

for the volume of the parallelepiped whose edges are dX1, dX2, dX3.
The corresponding volume dv in the deformed configuration is

dv = dx1·(dx2 × dx3).
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In component form we write

dv = ǫijkdx1idx2jdx3k = ǫijkFiAdX1AFjBdX2BFjCdX3C .

Using the well-known formula for the determinant

ǫijkFiAFjBFjC = ǫABCdetF

we obtain

(5) dv = JdV, J = detF.

This is known as Euler’s formula. It follows from (5) that

J = detF > 0.

Eq. (5) then provides J , called the Jacobian, with a physical interpretation:
it is the local ratio of current to reference volume. Since detF is positive, Eq.
(4) can be inversed

dX = F−1·dx.

1

2

N
dA

dX

dX

Figure 6. Surface element based on dX1, dX2

Consider next a surface element in the reference configuration such that
dA = NdA, where N is the unit normal to the surface (Fig. 6). Let dX
be an arbitrary vector cutting the edge of dA such that dX·dA > 0. Then
the parallelepiped with base dA and generator dX has volume dV = dX·dA.
Suppose that dX and dA become dx and da under the deformation (4), where
da = nda and n is the positive normal to the surface da. The material of
the volume dV forms a parallelepiped of volume dv = dx·da in the current
configuration, and so, by (5), we have

dx · nda = JdX · NdA = J(F−1·dx)·NdA = Jdx · F−T ·NdA,
where FT denotes the transpose of F. Since this equation holds true for an
arbitrary dx

nda = JF−T ·NdA.
This is known as Nanson’s formula.

Consider now the square of lengths of the tangential vectors dX and dx

|dX|2 = dX·dX = (F−1·dx)·(F−1·dx) = dx·(F−T ·F−1)·dx,
|dx|2 = dx·dx = (F·dX)·(F·dX) = dX·(FT ·F)·dX.

(6)

We introduce the right and left Cauchy-Green deformation tensors by

C = FT ·F, B = F · FT .
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It follows from (6) that both C and B are symmetric and positive definite.
With the help of these tensors we can express the change in length of an
arbitrary tangential vector as

|dx|2 − |dX|2 = dX·(C − I)·dX = dx·(I − B−1)·dx.
We define the Green strain tensor E by

(7) E =
1

2
(C − I).

Clearly, the material is unstrained at X if and only if E = 0 at X. For small
deformations it is convenient to use this strain tensor. However, for finite
deformations the direct use of C turns out to be simpler.

The displacement of a particle X from the reference to the current con-
figuration is defined by the point difference u = x − X. The displacement
gradient, denoted by u∇, is a tensor given by

u∇ = Gradu(X) = F − I.

It follows from (7) that

E =
1

2
(u∇ + ∇u + (∇u)·(u∇)).

For small displacement gradients we can neglect the last term in this equation
to obtain the well-known formula of the linear theory.

Problem 3. The deformation is called simple shear, if

x1 = X1 + γX2, x2 = X2, x3 = X3.

How is a cube 0 < X1 < a, 0 < X2 < a, 0 < X3 < a transformed under this
deformation. Calculate F, detF, F−1, C,B.

Problem 4. Consider the deformation

r = λ−1/2R, θ = Θ, z = λZ,

where (r, θ, z) and (R,Θ, Z) are cylindrical coordinates of x and X, respec-
tively, and λ is a constant. Calculate F, detF, F−1, C,B.

3. Polar decomposition

The polar decomposition is of considerable assistance in the geometrical
interpretation of the deformation. In order to prove it we require the following
preliminary lemma from the linear algebra: to any symmetric and positive
definite second-order tensor A there exists a unique symmetric and positive
definite second-order tensor S (the positive square root of A) such that S2 = A.
In order to determine S one has to diagonalize the matrix A. Let λ1, λ2, λ3 be
the eigenvalue of A associated with the eigenvectors ψ1,ψ2,ψ3

(8) A·ψi = λψi.

The homogeneous equation (8) for the eigenvectors ψi has nontrivial solutions
if and only if

det(A − λI) = 0.
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This is a cubic equation for the eigenvalues λi, which looks in the expanded
form like this

λ3 − IAλ
2 + IIAλ− IIIA = 0.

The three coefficients of this cubic equation IA, IIA, IIIA are called principal
invariants of the tensor A.

The tensor A is symmetric and positive definite, so

ψi·A·ψi = λi|ψi|2 > 0 ⇒ λi > 0.

The tensor S is then defined by

S·ψi = λ
1/2
i ψi.

One can check that

S2·ψi = S·(S·ψi) = S·(λ1/2
i ψi) = λiψi = A·ψi.

Therefore S2=A. We denote S by A1/2.
We formulate now the polar decomposition theorem: for any deforma-

tion gradient F with detF > 0 there exist unique positive definite symmetric
second-order tensors U and V, and a proper orthogonal second-order tensor
R such that

F = R · U = V · R.
A second-order tensor R is called proper orthogonal, if detR = 1 and

RT ·R = I or RT = R−1.

This means that R yields no strain and is simply a rigid rotation. We call R

the rotation tensor and U and V the right and left stretch tensor, respectively.
To prove the polar decomposition theorem we use the above mentioned

lemma to show that there exist symmetric, positive definite second-order ten-
sors U and V such that

(9) U2 = FT ·F, V2 = F · FT

since C = FT ·F and B = F · FT are symmetric and positive definite.
We then define

R = F · U−1, R′ = V−1·F.
On use of (9) and the symmetry of U, we obtain

RT ·R = U−T ·FT ·F · U−1 = U−T ·C · U−1

= U−T ·UT ·U · U−1 = I.

Hence R is orthogonal, F = R · U and similarly F = V · R′, where R′ is
orthogonal. We have detF > 0 and detU−1 > 0, therefore detR > 0. Since R

is orthogonal, the determinant of R must be 1, so R is proper orthogonal.
To prove uniqueness, we suppose that there exist second-order tensors R̄

and Ū, proper orthogonal and symmetric, positive definite respectively, such
that

F = R · U = R̄·Ū.
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It follows that

FT ·F = UT ·RT ·R · U = U2 = Ū2.

The result U = Ū follows from the above lemma, and therefore R = R̄.
Similarly for V · R′.

It remains to show that R = R′

F = V · R′ = (R′·R′−1)·V · R′ = R′·(R′−1·V · R′).

This is the right polar decomposition, so the uniqueness result proved above
implies that

R′ = R and U = RT ·V · R.
The eigenvalues of U, denoted by λ1, λ2, λ3, are called principal stretches.

In order to compute R and U we have to determine first the orthonormal eigen-
vectors ψ1,ψ2,ψ3 and the corresponding eigenvalues λ2

1, λ
2
2, λ

2
3 of the tensor

C. We introduce the matrices

Λ =





λ2
1 0 0

0 λ2
2 0

0 0 λ2
3



 , ψ = (ψ1,ψ2,ψ3),

so that Λ = ψT ·C·ψ . We calculate the right stretch tensor U according to

U = ψ·Λ1/2·ψT ,

with

Λ1/2 =





λ1 0 0
0 λ2 0
0 0 λ3



 , (λ1, λ2, λ3 are principal stretches).

and set R = F · U−1.

VR

U R

Figure 7. Polar decomposition of the deformation gradient
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The geometrical interpretation of the right polar decomposition follows: let
us apply the sequel of transformations F = R · U to an infinitesimal cube in
the reference configuration, whose edges of the length ds are parallel to the
principal axes of U. The transformation U does not change the directions of
the edges, but stretches their lengths in the direction of i-th principal axis to
λids. The transformation R rotates the principal axes to their final positions
(Fig. 7). The left polar decomposition rotates first the principal axes of the
cube without stretching and then stretches its edges to their final lengths. The
eigenvalues of V must be equal to those of U. Formally it can be seen from
the following identity

det(V − λI) = det(R · U · R−1 − λI) = det(R·(U − λI)·R−1) = det(U − λI).

We want to show now that the change in length of any material line in
the reference configuration depends only on U (or C), but not on the rotation
R. Let Γ be some material line in the reference configuration. Due to the
deformation it becomes the line γ in the current configuration. The length of
γ is equal to

l(γ) =

∫ b

a

∣

∣

∣

∣

dx

ds

∣

∣

∣

∣

ds =

∫ b

a

(

dX

ds
·U2·dX

ds

)1/2

ds =

∫ b

a

∣

∣

∣

∣

U·dX
ds

∣

∣

∣

∣

ds.

Similarly, the angle θ between two material lines γ1, γ2 at x depends only on
Γ1,Γ2 and U (or C), but not on R. Indeed

cos θ = (U·dX1)·(U·dX2)/(|U·dX1||U·dX2|).

Problem 5. Show that

IA = A11 + A22 + A33 = Aii = trA,

IIA =

∣

∣

∣

∣

A11 A12

A21 A22

∣

∣

∣

∣

+

∣

∣

∣

∣

A11 A13

A31 A33

∣

∣

∣

∣

+

∣

∣

∣

∣

A22 A23

A32 A33

∣

∣

∣

∣

= detA trA−1,

IIIA = detA.

Problem 6. Prove the Cayley-Hamilton identity

A3 − IAA2 + IIAA − IIIAI = 0.

Problem 7. Consider the deformation defined by

x1 =
√

3X1 +X2, x2 = 2X2, x3 = X3.

Find the right and left polar decompositions of the deformation gradient.

Problem 8. Consider the simple shear deformation as given in Problem 3.
Show that the largest change in angle between two orthogonal directions in the
X1, X2-plane in the reference configuration is

arctan(1/γ
√

1 + γ2/4).
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4. Analysis of motion

We return to the motion given in the form (2). The velocity and accelera-
tion of the particle X in the Lagrangean description are defined by

ẋ(X, t) =
∂

∂t
φ(X, t)|X=const,

ẍ(X, t) =
∂2

∂t2
φ(X, t)|X=const,

(10)

respectively, where the partial derivative indicates differentiation with respect
to t for fixed X. In the Eulerian description we write v(x, t) and a(x, t) for
the velocity and acceleration of the material particle which occupies the place
x at time t

ẋ(X, t) = v(φ(X, t), t),

ẍ(X, t) = a(φ(X, t), t).
(11)

We refer to ∂/∂t at fixed X (respectively x) as the material (spatial) time
derivative, and denote them by Dt and ∂t, respectively. The connection

Dtf = ∂tf + v·gradf

follows from an application of the chain rule for partial derivatives of f(x, t)
and use of (10)-(11)

Let U0 ⊆ B0 be a regular subregion of B0 in the reference configuration and
Ut = φt(U0). We now investigate the time rate of the following quantity

∫

Ut

f(x, t) dv,

with dv the volume element. The region of integration Ut is time-dependent
since it moves with particles through the space during the motion. One speaks
therefore of a transport theorem. This theorem is important for the formula-
tion of the balance equations.

In order to derive the transport theorem we need some preliminary results.
We have already proved Euler’s formula

(12) dv = JdV, J = detF.

For the material time derivative of the Jacobian J(X, t) the following identity

(13) DtJ = Jdivv

holds true. To show this let us work in components and use the following fact
from matrix algebra: if Aij(t) is a time-dependent matrix, then

d

dt
detA =

dAij

dt
(Cof)ij
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where (Cof)ij is the (i, j)-th cofactor of Aij. Differentiating the Jacobian as
the determinant of the deformation gradient we obtain

DtJ = Dt(
∂φi

∂XA

)(Cof)iA =
∂vi

∂xj

FjAJ(F−1)Ai = J(vi,i) = Jdivv.

We formulate now the conservation of mass. We assume the existence of a
scalar field ρ(x, t) such that the mass m of an arbitrary body U occupying Ut

in the current configuration is given by

m(U) =

∫

Ut

ρ(x, t) dv.

The conservation of mass reads

d

dt

∫

Ut

ρ(x, t) dv = 0.

We denote by ρ0(X) the mass density in the reference configuration. Provided
the motion is regular, the conservation of mass is equivalent to

(14) ρ(x, t)J(X, t) = ρ0(X) ( where x = φ(X, t)),

(15) Dtρ+ ρdivv = 0 or ∂tρ+ div(ρv) = 0.

We call (14) conservation of mass in the Lagrangean description, (15) conser-
vation of mass in the Eulerian description (or the continuity equation). To
prove (14) we take an infinitesimal material volume element dV in the refer-
ence configuration. Its mass equals dm = ρ0dV . The same material volume
element dv in the current configuration has the mass dm = ρdv. From Euler’
formula (12) follows ρJ = ρ0. To prove (15)

ρ̇0 = Dt(ρJ) = JDtρ+ ρDtJ = J(Dtρ+ ρdivv) = 0,

so (15) is equivalent to (14).
We formulate now the transport theorem: let f(x, t) be an arbitrary con-

tinuously differentiable scalar field. Then

(16)
d

dt

∫

Ut

f(x, t) dv =

∫

Ut

(Dtf + fdivv) dv.

To prove it we transform the volume integral by changing the variables from
x to X with the help of φt

∫

Ut

f(x, t) dv =

∫

U0

f(φ(X, t), t)J(X, t) dV.
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The integral in the right-hand side is taken over the time-independent region
U0. Thus, the time differentiation and the integration commute, so

d

dt

∫

Ut

f(x, t) dv =

∫

U0

(Dtf(φ(X, t), t)J(X, t) + fDtJ(X, t)) dV.

Remembering (13) we obtain

d

dt

∫

Ut

f(x, t) dv =

∫

U0

(Dtf + fdivv)J dV =

∫

Ut

(Dtf + fdivv) dv.

Note that Eq. (16) holds true also for vector and tensor fields.
If we replace the integrand in (16) by a product fρ, the transport theorem

takes the following form

(17)
d

dt

∫

Ut

fρ dv =

∫

Ut

Dtfρ dv.

Indeed
d

dt

∫

Ut

fρ dv =

∫

Ut

(Dtfρ+ fDtρ+ fρdivv) dv.

Taking into account that Dtρ + ρdivv = 0 (the equation of continuity) we
reduce this to (17).

We define the strain rate in the Lagrangean description as follows

D = Ė.

We differentiate E from (7) with respect to t

D =
1

2
(ḞT ·F + FT ·Ḟ).

It is easy to see that
Ḟ = L · F,

where L = gradv corresponds to the spatial velocity gradient. Combining the
last two equations we obtain

D = FT ·1
2
(LT + L)·F,

The symmetric part of L,

d =
1

2
(LT + L),

is called the spatial strain rate tensor.

Problem 9. The motion is called rigid-body if

x = c(t) + Q(t)·X
where Q(t) is proper orthogonal. Show that the velocity and acceleration of
this motion may be written

ẋ = ċ + ω × (x − c),
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and
ẍ = c̈ + ω × [ω × (x − c)] + ω̇ × (x − c),

respectively, where ω is the axial vector associated with the antisymmetric ten-
sor Q̇·QT .

Problem 10. The velocity field in a motion of a body is given in the
Eulerian description relative to a rectangular Cartesian coordinate system by

v1 = −c sin ct(2 + cos ct)−1x1,

v2 = c cos ct(2 + sin ct)−1x2, v3 = 0,

where c is a positive constant. Choosing as reference configuration the place-
ment of the body at t = 0 and adopting a common rectangular Cartesian coor-
dinate system, obtain expressions for xi in terms of the Lagrangian coordinates
XA and t. Find the volume v at time t of a sub-body which has volume V in
the reference configuration, and show that the greatest and least values of v are
(3

4
± 1

3

√
2)V .

x

y

z

Figure 8. Equal channel angular extrusion

Problem 11. A piece of metal in form of a cylinder is pressed into an
angular channel shown in Fig. 8. Each particle moves along the straight line
parallel to the y-axis until it reaches the diagonal plane x = y, after which it
changes the direction of motion and moves along the line parallel to the x-axis.
The magnitude of velocity is assumed to be 1m/s for all particles. Find the
equation describing this motion and the deformation gradient after the metal
passes the die. Find the principal stretches as well as the polar decomposition
of the deformation gradient.





CHAPTER 2

Balance laws

1. Balance of momentum

In order to formulate the balance of momentum we introduce the resultant
applied force acting on an arbitrary sub-body U

(1)

∫

Ut

ρ(x, t)b(x, t) dv +

∫

∂Ut

τ (x, t,n) da,

where ∂Ut is the boundary of the region occupied by U , b is the body-force
density, and τ is the contact force density (traction). A body force affects each
point of U (gravity is the most familiar example of a body force). A contact
force has a direct effect only on surface points but, of course, its influence is
noticed by all points of the body by force transmission across surfaces. Note
that τ depends on x, on time t, and on the outward normal vector n to ∂Ut

(Fig. 1).

t

t

Figure 1. Body- and contact forces

Provided the frame of reference is inertial, we postulate the balance of
momentum

(2)
d

dt

∫

Ut

ρv dv =

∫

Ut

ρb dv +

∫

∂Ut

τ da

for an arbitrary regular sub-region Ut of Bt.
We now formulate Cauchy’s theorem: provided φ(X, t) is continuously

differentiable and τ (x, t,n) is continuous there exists a second-order tensor
σ(x, t) such that

(3) τ (x, t,n) = σ(x, t)·n.
The tensor σ(x, t) is called the Cauchy stress tensor (or true stress tensor).

21
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To prove (3) we use the transport theorem to rewrite (2) in the form
∫

Ut

ρ(Dtv − b) dv =

∫

∂Ut

τ da.

Consider an infinitesimal tetrahedron (Fig. 2) with three faces lying in the
rectangular cartesian coordinate planes through a point x and normal to the
basis vectors ek whose areas are da1, da2, da3 and whose normal vectors are
−e1,−e2,−e3. The normal vector of the fourth face is denoted by n, its area
by da.

1

2

3

e

e

e

t

t

t

t

Figure 2. Tetrahedron with contact forces

The balance of momentum applied to the tetrahedron yields

ρ(a − b)dv = τ (x,n)da+
3

∑

k=1

τ (x,−ek)dak.

Let the tetrahedron be shrunk to the point x while its form remains unchanged.
In the limit dv/da→ 0 and

dak/da = nk.

Thus

(4) 0 = τ (x,n) +
3

∑

k=1

τ (x,−ek)nk.

For the limit n → ek we have

τ (x, ek) = −τ (x,−ek).

This means that the contact force exerted by material on one side (side 1)
of the surface on the material on the other side (side 2) is equal and oppo-
site to the force exerted by the material on side 2 on the material of side 1



1. BALANCE OF MOMENTUM 23

(“actio=reactio”). Substituting this into Eq. (4) we obtain

τ (x,n) =
3

∑

k=1

τ (x, ek)nk.

By setting τi(x, ej) = σij, we obtain

(5) τi = σijnj, or τ = σ·n.

Eq. (5) yields the following interpretation of σij: it is the i-th component
of the contact force acting on the surface whose unit normal is in the j-th
direction.

In view of (5) and with the help of Gauss’ theorem the balance of momen-
tum (2) becomes

∫

Ut

ρ(Dtv − b) dv =

∫

∂Ut

σ·n da =

∫

Ut

divσ dv.

Since this is valid for an arbitrary sub-body U the field equation follows

(6) ρDtv = ρb + divσ.

This is known as Cauchy’s first law of motion (in the Eulerian description).
Sometimes it is useful to present the balance of momentum in the La-

grangean description. Let us transform the volume and surface integral in (2)
with the add of Nanson’s formula

d

dt

∫

U0

ρ0ẋ dV =

∫

U0

ρ0B dV −
∫

∂U0

Jσ·F−T ·N dA,

where B(X, t) = b(x, t). We define the first Piola-Kirchhoff stress tensor as

T = Jσ·F−T .

Thus, T · N is the contact force per unit reference area. We regard T as a
function of X and t. Using Gauss’ theorem we obtain

∫

U0

[ρ0(ẍ − B) − DivT] dV = 0.

Since U0 is arbitrary, the field equation in the Lagrangean description follows

ρ0ẍ = ρ0B + DivT.

Problem 12. Derive the equation of motion for an ideal fluid, whose
Cauchy stress tensor σ = −pI.
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2. Balance of moment of momentum

We define the moment of momentum of a sub-body U with respect to the
origin of a coordinate system as

∫

Ut

x × ρv dv.

The balance of moment of momentum is postulated as

(7)
d

dt

∫

Ut

x × ρv dv =

∫

Ut

x × b dv +

∫

∂Ut

x × σ·n da.

Using Gauss’ theorem we transform the surface integral into the volume inte-
gral

∫

∂Ut

x × σ·n da =

∫

Ut

div(x × σ) dv.

Applying the transport theorem to the left-hand side of (7) and taking into
account that Dtx × ρv = v × ρv = 0 we obtain

ρ(x ×Dtv) = ρ(x × b) + div(x × σ).

In component form we write

ρǫijkxjDtvk = ρǫijkxjbk + (ǫijkxjσkl),l.

Differentiating the last term of this equation we have

(ǫijkxjσkl),l = ǫijkδjlσkl + ǫijkxjσkl,l.

Thus

ρǫijkxjDtvk = ρǫijkxjbk + ǫijkxjσkl,l + ǫijkσjk.

Taking into account the balance of momentum (6) we reduce this to

ǫijkσjk = 0 or σij = σji,

i.e. the Cauchy stress tensor is symmetric. Let us introduce also the second
Piola-Kirchhoff stress tensor as follows

S = F−1·T = JF−1·σ·F−T .

Problem 13. Prove that the second Piola-Kirchhoff stress tensor is also
symmetric.

3. Balance of energy

In this section we formulate the balance of energy (or the first law of ther-
modynamics). We assume that the energy of a body is a sum of the kinetic
and internal energies

E =

∫

Ut

ρ(e+
1

2
v · v) dv.
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Here e corresponds to the internal energy density. The balance of energy states

(8) Ė = P +Q,

where P is the power of the external forces, and Q is the rate at which heat is
supplied to the body. The power P of the body and contact forces is given in
the form

P =

∫

Ut

ρb · v dv +

∫

∂Ut

τ ·v da.

The heat supply comes from two sources: the body heat supply and the heat
flow across the boundary; its rate is equal to

Q =

∫

Ut

ρr(x, t) dv +

∫

∂Ut

h(x, t,n) da.

Here r(x, t) is the body heat supply per unit mass and unit time, h(x, t,n) is
the heat flux across the surface da with the normal n per unit time. Eq. (8)
becomes

(9)
d

dt

∫

Ut

ρ(e+
1

2
v · v) dv =

∫

Ut

ρ(b · v + r) dv +

∫

∂Ut

(τ ·v + h) da.

Replacing in the right-hand side of this equation τ = σ·n and transforming
the surface integral over ∂Ut into the volume integral over Ut, we obtain

(10)

∫

Ut

{ρ[Dt(e+
1

2
v · v) − b · v − r] − div(v·σ)} dv =

∫

∂Ut

h da.

Assume that the motion and other fields (e, r, h) are regular. Then the
balance of energy implies the existence of a unique vector field q(x, t) such
that h(x, t,n) = −q · n. To prove this we apply the balance of energy to an
infinitesimal tetrahedron (see Fig. 2)

{ρ[Dt(e+
1

2
v · v) − b · v − r] − div(v·σ)}dv = h(x,n)da+

3
∑

k=1

h(x,−ek)dak.

In the limit dv/da→ 0 and dak/da→ nk we arrive at

h(x,n) = −
3

∑

k=1

h(x,−ek)nk.

Denoting by qk the heat flux h(x,−ek), we write this equation in the form

h = −q · n.
The heat flux h is positive if q and n are opposite; therefore the minus sign in
the last equation agrees with our common sense.
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Replacing in the right-hand side of (10) h = −q · n and transforming the
surface integral into the volume integral, we get

∫

Ut

{ρ[Dt(e+
1

2
v · v) − b · v − r] − div(v·σ) + divq} dv = 0.

Since this equation holds true for an arbitrary body U , the integrand must
vanish. We obtain the balance of energy in the local form

ρ[Dt(e+
1

2
v · v) − b · v − r] − div(v·σ) + divq = 0.

This equation can be transformed into

ρDte+ v·ρDtv − ρb · v − ρr − div(v·σ) + divq = 0.

Due to the symmetry of σ

div(v·σ) = (vjσjk),k = vj,kσjk + vjσjk,k = d :σ + v·divσ.

Taking into account the balance of momentum (6) we obtain finally

ρDte+ divq = σ: d + ρr.

We can also present the balance of energy in the Lagrangean description

d

dt

∫

U0

ρ0(E +
1

2
ẋ·ẋ) dV =

∫

U0

ρ0(B·ẋ +R) dV +

∫

∂U0

(ẋ·T · N − Q · N) dA,

where

(11) E(X, t) = e(x, t), R(X, t) = r(x, t), Q = JF−1·q.
Transformation of the surface integral into the volume integral leads to

∫

U0

ρ0(Ė + ẋ·ẍ) dV =

∫

U0

[ρ0(B·ẋ +R) + Div(ẋ·T) − DivQ] dA.

Due to the arbitrariness of U0

ρ0(Ė + ẋ·ẍ) = ρ0(B·ẋ +R) + Div(ẋ·T) − DivQ.

In component form we have

Div(ẋ·T) = (ẋiTiA),A = ẋi,ATiA + ẋiTiA,A = T :Ḟ + ẋ·DivT

= vi,kFkAFiBSBA + ẋiTiA,A = S : D + ẋ·DivT.

Taking into account the balance of momentum we obtain

ρ0Ė + DivQ = ρ0R + T :Ḟ = ρ0R + S : D.

Problem 14. Using the transport theorem and the equation of motion,
show that the change of kinetic energy is equal to

d

dt

∫

Ut

1

2
ρv · v dv =

∫

Ut

ρb · v dv +

∫

∂Ut

τ ·v da−
∫

Ut

σ : d dv.
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4. Invariant balance of energy, principle of virtual work

Using the following argument we can derive the balance of momentum
from the balance of energy (9). Imagine that we observe the motion also in
the second inertial frame of reference, which moves with the constant velocity
c with respect to the first inertial reference frame. These two inertial frames
of reference are related to each other by the Galilei transformation

(12) x′ = x − (t− t0)c.

It is the fundamental postulate of classical mechanics, that forces are objective,
i.e. they do not change under Galilei transformations (12). Consequently the
contact and body forces, τ and b, respectively, remain the same in all inertial
frames of reference which are related to each other by Galilei transformations;
the same is true for the mass density ρ. Similar invariant properties are pos-
tulated also for e, r and h. Then only the velocities of motion v′ and v are
different in these inertial frames of reference. They are related by

v′ = v − c.

We write now the balance of energy (9) with respect to the second frame
of reference at the time t = t0

∫

Ut

ρ[Dte+ (v − c)·Dtv] dv =

∫

Ut

ρ[b·(v − c) + r] dv +

∫

∂Ut

[τ ·(v − c) + h] da.

Now let us subtract (9) from this equation to obtain




∫

Ut

ρ(Dtv − b) dv −
∫

∂Ut

τ da



 ·c = 0.

This holds true for an arbitrary c, so the expression in the square brackets
must vanish. Thus, we have shown that the balance of momentum (2) can be
regarded as the consequence of the invariance of balance of energy under Galilei
transformations. The detailed discussion of the invariance of the balance of
energy under rigid body motions can be found in the book of Marsden and
Hughes [4].

We formulate now the principle of virtual work. Consider first the balance
of momentum in the Lagrangean description

(13) ρ0ẍ = ρ0B + DivT.

We multiply this equation by an arbitrary vector field w and integrate over
the region B0 occupied by the body

∫

B0

ρ0ẍ·w dV =

∫

B0

(ρ0B · w − w·DivT) dV.
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In the classical literature, w is often called a virtual displacement and denoted
by δφ. We integrate the last term by parts

(14)

∫

B0

ρ0ẍ·w dV =

∫

B0

ρ0B · w dV −
∫

B0

T :Gradw dV +

∫

∂B0

w · T · N dA.

The validity of (14) for all variations w is called the principle of virtual
work. This principle must be modified if displacements are prescribed at the
boundary. The principle of virtual work plays a central role in finite element
procedures.

Problem 15. Derive the balance of momentum from (14).

5. Second law of thermodynamics

In order to formulate the second law of thermodynamics we need two new
quantities. The first one is the absolute temperature, referred to as an intensive
quantity and denoted by θ(x, t). The second one is the entropy, referred to as
an extensive quantity, whose density is denoted by η(x, t). The entropy of the
body U is given by

∫

Ut

ρη(x, t) dv.

The second law of thermodynamics states that

(15)
d

dt

∫

Ut

ρη dv ≥
∫

Ut

ρr

θ
dv +

∫

∂Ut

h

θ
da.

Here h = −q · n is the heat flux across the surface element da with the normal
n per unit time. When the heat supply and the heat flux are absent (adiabatic
process with r = 0 and h = 0), the following inequality holds true

d

dt

∫

Ut

ρη dv ≥ 0,

which means that the entropy cannot decrease.
With the help of the transport and Gauss’ theorems we obtain

∫

Ut

ρDtη dv ≥
∫

Ut

[
ρr

θ
− div(q/θ)] dv.

Since Ut is arbitrary, this inequality leads to

(16) ρDtη ≥ ρr/θ − div(q/θ) = ρr/θ − divq/θ + q.gradθ/θ2.

We call γ = ρDtη−ρr/θ+div(q/θ) the entropy production rate. The inequality
(16) says that γ ≥ 0.
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We can also present the entropy production inequality in the Lagrangean
description. Making the change of variables x → X in (15) we obtain

d

dt

∫

U0

ρ0N dV ≥
∫

U0

ρ0R/Θ dV −
∫

∂U0

Q · N/Θ dA,

where
N(X, t) = η(x, t), Θ(X, t) = θ(x, t),

and R and Q are defined through r and q according to (11). Using again
Gauss’ theorem and the arbitrariness of U0 we get

ρ0Ṅ ≥ ρ0R/Θ − Div(Q/Θ) = ρ0R/Θ − DivQ/Θ + Q·GradΘ/Θ2.

There are alternative forms of the entropy production inequality often used
in practice. We introduce the free energy density

(17) ψ = e− θη (Eulerian description),

Ψ = E − ΘN (Lagrangean description).

Provided all of the balance equations holds true, then the entropy production
inequality, in the Eulerian description, is equivalent to

(18) ρ(ηDtθ +Dtψ) − σ: d + q·gradθ/θ ≤ 0,

and, in the Lagrangean description, to

(19) ρ0(NΘ̇ + Ψ̇) − T :Ḟ + Q·GradΘ/Θ ≤ 0.

To prove (18) we use the definition of ψ according to (17)

Dtψ = Dte− ηDtθ − θDtη ⇒ θDtη = Dte− ηDtθ −Dtψ.

Substitute this into (16) and multiply by θ

ρ(Dte− ηDtθ −Dtψ) ≥ ρr − divq + q·gradθ/θ.

According to the balance of energy

ρDte = ρr − divq + σ: d.

Combining these two equations we arrive at (18).

Problem 16. Prove the entropy production inequality (19).





CHAPTER 3

Nonlinear elastic materials

1. Consequences of thermodynamics

The kinematics as well as the balance equations considered so far apply
to all continua (solids, fluids, gases). However, as we know from our expe-
rience, different materials will have different responses to the external forces
and temperature. Therefore the kinematic and balance equations are insuffi-
cient to determine the motion of a continuum. One can also see this formally
by counting the number of equations and the number of unknown functions.
The system of equations should therefore be completed by the constitutive
equations characterizing the material behavior.

We first collect the set of balance equations together

ρ0 = ρJ (mass),(1)

ρ0ẍ = ρ0B + DivT (momentum),(2)

S = ST (moment of momentum),(3)

ρ0Ė + DivQ = ρ0R + S : D (energy),(4)

ρ0(NΘ̇ + Ψ̇) − T :Ḟ + Q·GradΘ/Θ ≤ 0 (entropy),(5)

Ψ = E − ΘN (definition of free energy).(6)

This system of equations is universal, but not sufficient to determine the mo-
tion. One treats x(X, t) and Θ(X, t) as the unknowns and attempts to find
them from (2) and (4). Eqn. (1) is used to determine ρ from ρ0 and J = detF.
We regard B and R as given externally. Other field quantities S (or T = F · S),
Q,Ψ, and N must be expressed in terms of φ and Θ so that the equations (3),
(5), (6) are satisfied.

A thermoelastic material is called simple, if its free energy density Ψ and
the remaining field quantities S (or T = F · S), Q and N depend only on
X,F,Θ, and Γ = GradΘ

Ψ = Ψ̂(X,F,Θ,Γ),

T = T̂(X,F,Θ,Γ),

Q = Q̂(X,F,Θ,Γ),

N = N̂(X,F,Θ,Γ).

When these field quantities do not depend on X, the material is said to be
homogeneous.

31
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We want now draw the consequences from the second law of thermodynam-
ics (5) for a simple thermoelastic material. Differentiation of Ψ̂(X,F,Θ,Γ)
with respect to t gives

Ψ̇ =
∂Ψ̂

∂F
:Ḟ +

∂Ψ̂

∂Θ
Θ̇ +

∂Ψ̂

∂Γ
·Γ̇.

We substitute this equation into (5)

(7) ρ0NΘ̇ + ρ0(
∂Ψ̂

∂F
:Ḟ +

∂Ψ̂

∂Θ
Θ̇ +

∂Ψ̂

∂Γ
·Γ̇) − T :Ḟ + Q·GradΘ/Θ ≤ 0,

We require that this inequality holds true for arbitrary processes. As the first
consequence we can then check that

Ψ = Ψ̂(X,F,Θ).

Thus, the free energy density of simple materials does not depend on the
temperature gradient. Moreover, we have

N = −∂Ψ̂

∂Θ
,(8)

T = ρ0
∂Ψ̂

∂F
.(9)

To prove the first statement let us consider a process with Ḟ = 0, Θ̇ = 0, but
Γ̇ is arbitrary. If ∂Ψ̂/∂Γ 6= 0, then we can choose Γ̇ to violate (7). Assume

now that (8) is not valid. Then we choose x independent of t so that Ḟ = 0
and

ρ0(NΘ̇ +
∂Ψ̂

∂Θ
Θ̇) + Q·GradΘ/Θ ≤ 0.

We can change Θ to a new Θ
′

so that Θ
′

t0
= Θt0 and Θ̇

′

t0
= αΘ̇t0 , where

α is any prescribed constant. This constant α can be chosen to violate (7).
Therefore we deduce the equation (8). To prove (9) we fix the temperature Θ

so that GradΘ = 0 and change Ḟ arbitrarily. Since Ḟ can also be replaced by
−Ḟ, inequality (7) can only be satisfied, if (9) is valid. With (8) and (9) the
inequality (7) reduces to

(10) Q·GradΘ/Θ ≤ 0.

Assume that a motion of a body is superimposed with an additional rigid-
body motion such that the deformation gradient of the superimposed motion
becomes F2 = R · F1. Here F1 is the deformation gradient of the original
motion and R(t) is the rotation. Since the rigid body motion does not change
the strain of the body, we require that the free energy densities of these motions
should be equal

(11) Ψ̂(X,F1,Θ) = Ψ̂(X,F2,Θ).

From this principle follows, that the free energy density of a thermoelastic
body depends only on X, C (or U), and Θ

(12) Ψ = Ψ̂(X,C,Θ).
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In order to prove this we determine the Green deformation tensor in these
coordinate systems

C2 = FT
2 ·F2 = FT

1 ·RT ·R · F1 = FT
1 ·F1 = C1.

They are equal, so (12) satisfies (11). From the other side, if C1 = C2, then
F1 and F2 = R · F1 differ from each other by a rigid body rotation R. Indeed

RT ·R = F−T
1 ·FT

2 ·F2·F−1
1 = F−T

1 ·C2·F−1
1 = F−T

1 ·C2·C−1
1 ·FT = I.

We define the function Ψ(X,C,Θ) as given by the formula (11).
From (9) and (12) follows

(13) S = 2ρ0
∂Ψ̂

∂C
.

To prove it we start with (9)

(14) TiI = ρ0
∂Ψ̂

∂FiI

= ρ0
∂Ψ̂

∂CJK

∂CJK

∂FiI

.

Since C = FT ·F we have

(15)
∂CJK

∂FiI

= δIJFiK + δIKFiJ .

Substituting (15) into (14) and observing that ∂Ψ̂/∂CJK is symmetric we get

(16) TiI = ρ0
∂Ψ̂

∂CJK

∂CJK

∂FiI

= ρ0
∂Ψ̂

∂CJK

(δIJFiK + δIKFiJ) = 2ρ0FiJ
∂Ψ̂

CJI

.

From (16) follows (13). According to (13) the second Piola-Kirchhoff stress
tensor is symmetric, i.e., the balance of moment of momentum (3) is satisfied
automatically.

We can use the constitutive equations (8) and (13) to simplify the balance
of energy (4). We first transform the term ρ0Ė as follows

ρ0Ė = ρ0
d

dt
(Ψ +NΘ) = ρ0(

∂Ψ̂

∂C
:Ċ +

∂Ψ̂

∂Θ
Θ̇ + ṄΘ +NΘ̇)

= ρ0(2
∂Ψ̂

∂C
: D + ṄΘ) = S : D + ρ0ṄΘ.(17)

Substituting (17) into (4) we get

(18) ρ0ΘṄ + DivQ = ρ0R.

The simplest constitutive equation for Q and GradΘ is Fourier’s law

(19) Q = −kGradΘ.

The inequality (10) can only be satisfied, if the coefficient k is positive. For
a rigid heat conductor the free energy density can depend only on X and Θ:
Ψ = Ψ̂(X,Θ). The temperature field inside this conductor is then determined
through (18) and (19) in combination

(20) −ρ0Θ
∂2Ψ

∂Θ2
Θ̇ − k∆Θ = ρ0R,
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where ∆ = Div(Grad.) is Laplace’s operator.
We consider now two special processes in a thermoelastic body. The first

process is the so called isothermal process, with Θ=const everywhere in the
body. This process can be realized approximately, if it is quasistatic and the
material is a good heat conductor (as metals). One can then use the equations

ρ0ẍ = ρ0B + Div(F · S)(21)

S = 2ρ0
∂Ψ

∂C
to determine the motion.

In contrary to isothermal processes there are so called isentropic processes,
in which entropy N=const. A process of this type can be realized approxi-
mately, if its quantities (like velocity, strain, and stress) changes very fast and
the body is a bad heat conductor. The simple example is wave propagation in
elastic media. The constitutive equation takes a simple form in terms of the
internal energy referred to as function of entropy N and C. Indeed, from Eq.
(6) follows

(22) E = Ψ +NΘ.

According to the constitutive equation (8) entropy N depends on Θ and C, so
one can express E also as function of Θ and C. Additionally, we assume that

(23)
∂N

∂Θ
= −∂

2Ψ

∂Θ2
> 0.

Then we can inverse the relation (8) in order to express Θ through N and C

(24) Θ = Θ(N,C).

Now we substitute (24) into (22) and express E through N and C. We say
that Θ and N are conjugate variables, and E is Legendre’s transformation of
Ψ. One can check the following relationships

(25) Θ =
∂E

∂N
|C=const,

(26) S = 2ρ0
∂E

∂C
|N=const .

To prove (25)

(27)
∂E

∂N
|
C=const=

∂Ψ

∂Θ

∂Θ

∂N
+
∂Θ

∂N
N + Θ = Θ.

We use here Eq. (8). In a similar manner one can prove (26). The latter can
be used as a constitutive equation for isentropic processes, with the entropy
regarded as a given constant. One can determine the motion through Eqs.
(21) and (26). Since isothermal and isentropic processes are mathematically
similar, we shall focus our analysis to isothermal processes. The general case
of thermoelasticity will not be considered.

Problem 17. Prove (26).
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Problem 18. Derive the constitutive equation (9) for a material whose
free energy density depends on F through J = detF: Ψ = h(J).

2. Isotropic materials

In this Section we restrict ourselves to purely mechanical problems (i.e. the
temperature dependence is eliminated through the assumption, that the pro-
cess is either isothermal or isentropic). The only constitutive relation between
S and C reads

(28) S = 2
∂W

∂C
,

where W = ρ0Ψ for an isothermal process and W = ρ0E for an isentropic
process. We call W simply the stored energy per unit volume of the reference
configuration. We also call the following tensor of fourth order

EIJKL =
∂SIJ

∂CKL

= 2
∂2W

∂CIJ∂CKL

tensor of elastic moduli. This tensor satisfies the following symmetry properties

EIJKL = EJIKL = EIJLK = EKLIJ .

Due to these symmetry properties, the number of independent components of
E reduces to 21.

The number of independent components of the tensor of elastic moduli
reduces considerably if, additionally, the material has some symmetry. We
analyze the case of isotropic material. Let us consider an arbitrary proper
orthogonal transformation (rotation) R of the reference configuration

X′ = R · X
The Green deformation tensor is transformed under this transformation ac-
cording to

C′ = R · C · RT .

We say that a material is isotropic at X if its stored energy density is invariant
under rotations R

W (X,R · C · RT ,Θ) = W (X,C,Θ)

(compare this with the requirement (11)). A material is isotropic if it is
isotropic at every point. From now on we consider only homogeneous isotropic
materials.

As we have shown in the first chapter, the symmetric and positive definite
tensor C can be brought to diagonal form by an orthogonal transformation.
Since the stored energy density does not change under such transformations,
W depends only on the eigenvalues λ2

1, λ
2
2, λ

2
3 of the tensor C

W = U(λ2
1, λ

2
2, λ

2
3).
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The function U(λ2
1, λ

2
2, λ

2
3) must be symmetric with respect to any permutation

of λ2
1, λ

2
2, and λ2

3. We can also express the eigenvalues λ2
1, λ

2
2, and λ2

3 through
the principal invariants I, II, III of the tensor C, where

I = λ2
1 + λ2

2 + λ2
3 = trC = δIJCIJ ,

II = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 = detC(trC−1) =

1

2
[(trC)2 − trC2],(29)

III = λ2
1λ

2
2λ

2
3 = detC = J2.

Therefore, the stored energy density of an isotropic material can also be ex-
pressed as function of the principal invariants

W = Φ(I, II, III).

We derive now the formula for the second Piola-Kirchhoff stress tensor in terms
of this function Φ(I, II, III). According to (28) and the rule of differentiation

(30) S = 2
∂W

∂C
= 2

(

∂Φ

∂I

∂I

∂C
+
∂Φ

∂II

∂II

∂C
+

∂Φ

∂III

∂III

∂C

)

.

We calculate now the derivatives of the principal invariants with respect to C.
Obviously

(31)
∂I

∂C
= I,

∂I

∂CIJ

= δIJ .

To calculate ∂III/∂C we use the following formula for the determinant

(32) III = detC = ǫIJKCLICMJCNK ,

where (L,M,N) is an even permutation of (1,2,3). Thus,

(33)
∂III

∂CLI

= ǫIJKCMJCNK = ǫPJKCLPCMJCNK(C−1)LI = detC(C−1)LI .

In another words

(34)
∂III

∂C
= III C−1.

We calculate ∂II/∂C by applying the product rule to (29)

∂II

∂C
=

(

∂

∂C
detC

)

trC−1 + detC
∂

∂C
trC−1

(35) = (detCtrC−1)C−1 + detC
∂

∂C
trC−1.

We are going to show that

(36)
∂

∂C
trC−1 = −C−2.

Indeed, trC−1 can be written in the form

trC−1 = (C−1)II = δKL(C−1)KL.
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Hence

(37)
∂

∂CIJ

trC−1 = δKL
∂(C−1)KL

∂CIJ

.

It is easy to see that
CKL(C−1)LM = δKM .

We differentiate this identity with respect to CIJ

δIKδJL(C−1)LM + CKL
∂(C−1)LM

∂CIJ

= 0.

Multiplication of this equation with (C−1)KN gives

(38)
∂(C−1)KL

∂CIJ

= −(C−1)IK(C−1)JL.

Formula (36) follows from (37) and (38). From (31), (32), (35), and (36) follows
the following formula for the second Piola-Kirchhoff stress tensor

(39) S = 2

[

∂Φ

∂I
I + (

∂Φ

∂II
II +

∂Φ

∂III
III)C−1 − ∂Φ

∂II
IIIC−2

]

.

Problem 19. Show that the number of independent components of E is
21.

Problem 20. Derive the constitutive equation similar to (39) for plane
strain deformations

x1 = φ1(X1, X2), x2 = φ2(X1, X2), x3 = X3.

3. Examples of constitutive equations

In the previous Section we have derived the constitutive equation for an
elastic isotropic material in terms of the stored energy density. Let us analyze
some constraints for the stored energy density, in order to make the boundary
value problem of nonlinear elasticity well-posed. We present the stored energy
density of a homogeneous and isotropic elastic material as function of the
principal stretches

(40) W = Ω(λ1, λ2, λ3).

Let us consider a homogeneous deformation

xi = λiXi (no sum!).

The deformation gradient is

F = diag(λ1, λ2, λ3).

We determine now the second Piola-Kirchhoff stress tensor caused by this
deformation. According to (39) this stress tensor S must be diagonal with the
following diagonal components

Si = 2

[

∂Φ

∂I
+

(

∂Φ

∂II
II +

∂Φ

∂III
III

)

λ−2
i − ∂Φ

∂II
IIIλ−4

i

]

.
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The first Piola-Kirchhoff stress tensor T = F · S must also be diagonal, and
its diagonal components are equal to

(41) Ti = 2λi

[

∂Φ

∂I
+

(

∂Φ

∂II
II +

∂Φ

∂III
III

)

λ−2
i − ∂Φ

∂II
IIIλ−4

i

]

.

These components can be simply expressed in terms of function Ω(λ1, λ2, λ3)
from (40). Indeed, the partial derivatives of Ω are

(42)
∂Ω

∂λi

=
∂Φ

∂I

∂I

∂λi

+
∂Φ

∂II

∂II

∂λi

+
∂Φ

∂III

∂III

∂λi

.

From (29)

∂I

∂λi

= 2λi,

∂II

∂λi

= 2λi(II.λ
−2
i − III.λ−4

i ),(43)

∂III

∂λi

= 2λiIII.λ
−2
i .

Substituting (43) into (42) and comparing with (41) we see that

Ti =
∂Ω

∂λi

.

The Cauchy stress tensor σ = J−1T · FT is also diagonal, with the following
diagonal components

σi = J−1λi
∂Ω

∂λi

.

s

s

s

s

s

s

Figure 1. Stretched cube

We formulate two constraints for the stored energy density Ω(λ1, λ2, λ3):

(σi − σj)(λi − λj) > 0 for λi 6= λj,

∂2Ω/∂λ2
i > 0 (i = 1, 2, 3).



3. EXAMPLES OF CONSTITUTIVE EQUATIONS 39

In the literature these constraints are called Baker-Ericksen’s inequalities. The
physical meaning of these inequalities can be explained as follows. Consider
an elastic cube stretched by the tractions normal to its faces (Fig. 1). The
traction Ti per unit area of the reference configuration (or σi per unit area
of the current configuration) is applied to the face whose normal is directed
along the Xi-axis. The first inequality says: if the stretch λ1 along the X1-
axis is greater than the stretch λ2 along the X2-axis, then this must be true
for the corresponding tractions. The second inequality says: the larger the
traction applies to one face, the larger the corresponding stretch becomes. Ball
has shown that Baker-Ericksen’s inequalities are satisfied for elastic materials
whose stored energy density is polyconvex. For this class of materials the
existence theorem of nonlinear elasticity can be proved. Note, however, that
the Baker-Ericksen inequalities may fail for materials for which phase transition
occurs (see Section 2 of chapter 4).

We now show some simple examples of stored energy density for elastic
isotropic materials. The simplest example is

W = h(J) = h(III1/2) = h(λ1λ2λ3).

The second Piola-Kirchhoff stress tensor is determined in accordance with (39)

S = 2
h′(J)

2III1/2
IIIC−1 = h′(J)JC−1.

The first Piola-Kirchhoff stress tensor is then equal to

T = F · S = h′(J)JF−T ,

the Cauchy stress tensor to

(44) σ =
1

J
T · FT = h′(J)I.

Denoting h′(J) by −p, we see that (44) is the constitutive equation for ideal
fluids and gases. As it is shown in Problem 12 the balance of momentum in
the Eulerian description becomes Euler’s equation of hydrodynamics. Thus,
we can also simulate motions of ideal fluids and gases within the framework of
nonlinear elasticity.

The next example is a so called St.-Venant-Kirchhoff material. The stored
energy density of such a material is

W =
1

2
λ(δIJEIJ)2 + µEIJEIJ ,

where E = 1/2(C − I) is the Green strain tensor. To find the second Piola-
Kirchhoff stress tensor we use the following formula

S = 2
∂W

∂C
=
∂W

∂E
.

We then get a linear relation between S and E

SIJ = λ(EKK)δIJ + 2µEIJ .
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However this does not lead to linear equation of motion. Such a material is
called physically linear, but geometrically nonlinear. The constitutive equation
of this type might be appropriate for metals, whose elastic strains are usually
small.

The following example, due to Ogden, is often used to model rubberlike
materials

W =
M

∑

i=1

ai(λ
αi

1 + λαi

2 + λαi

3 − 3) +
N

∑

j=1

bj((λ1λ2)
βj

+(λ1λ3)
βj + (λ2λ3)

βj − 3) + h(λ1λ2λ3),(45)

where ai, bj are positive constants, αi ≥ 1, βj ≥ 1, and h is a convex function
of one variable. The term 3 is a normalization constant such that the first two
terms vanish when there is no deformation.

In special case M = N = 1 and α1 = β1 = 2 Eq. (45) reduces to

(46) W = a1(I − 3) + b1(II − 3) + h(J).

This is called the Hadamard material, for which the constitutive equation looks
like this

S = 2[a1I + (b1II +
1

2
h′(J)J)C−1 − b1J

2C−2].

If the additional constraint J = 1 is imposed, the material is called incom-
pressible. In case (46) the material is called Mooney-Rivlin, with the stored
energy density

W = a1(I − 3) + b1(II − 3).

The further special case b1 = 0 is called a neo-Hookean material. The con-
straint J = 1 can be satisfied by introducing a Lagrange multiplier into the
equation as follows: we replace

σ by σ − pI,

where p is an unknown function called pressure, to be determined by the
condition of incompressibility. In terms of the first Piola-Kirchhoff stress tensor
T, we replace T from our constitutive equation by

T − pF−T .

We emphasize that in an initial boundary value problem, p becomes an un-
known and depends on the motion in a non-local way, as in hydromechanics.
So, for the Mooney-Rivlin materials we have

S = 2[a1I + b1IIC
−1 − b1C

−2] − pC−1.

Using the Cayley-Hamilton identity we can present this in the form

S = 2[(a1 + b1I)I − b1C] − pC−1.

In terms of the Cauchy stress tensor this constitutive equation reads

σ = J−1F · S · FT = 2[(a1 + b1I)B − b1B
2] − pI.
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4. Boundary-value problems

Let us return to the equation of motion for a homogeneous elastic material
and formulate the basic boundary value problems. In the component form the
equation of motion reads

ρ0ẍi = ρ0Bi + TiA,A,

with TiA being given through the constitutive equation

(47) TiA =
∂W (F )

∂FiA

.

Inserting this constitutive equation into the equation of motion we obtain the
governing equation

ρ0ẍi = ρ0Bi +
∂TiA

∂FjB

FjB,A.

We call the tensor of fourth order

AiAjB =
∂TiA

∂FjB

=
∂2W

∂FiA∂FjB

elasticity tensor. Since AiAjB depends only on FiA = xi,A and since FiA,B =
xi,AB, the governing equation is the quasi-linear differential equation of second
order with respect to three unknown functions xi(XA, t). To calculate the
components of elasticity tensor we apply the product rule to TiA = FiCSCB

AiAjB =
∂TiA

∂FjB

=
∂FiC

∂FjB

SCA + FiC
∂SCA

∂CDE

∂CDE

∂FjB

.

According to the definition of the tensor of elastic moduli

∂SCA

∂CDE

= 2
∂2W

∂CCA∂CDE

= ECADE.

Taking into account that

∂CDE

∂FjB

=
∂(FkDFkE)

∂FjB

= δDBFjE + δEBFjD,

we have

AiAjB =
∂PiA

∂FjB
= δijSAB + 2FiCECABDFjD.

So, in component form the governing equation reads

(48) ρ0ẍi = ρ0Bi + AiAjBxj,BA.

In addition to the governing equation some conditions must be formulated
at the boundary ∂B0 of the body. Three type of boundary conditions can be
posed:

a) displacements wi are prescribed on ∂B0.
b) tractions τi = TiANA are prescribed on ∂B0.
c) mixed: displacements wi are prescribed on a part ∂d of ∂B0 and trac-

tions τi on part ∂τ of ∂B0, where ∂d ∩ ∂τ = ∅ and ∂d ∪ ∂τ = ∂B0 (see
Fig. 2).
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¶

¶
t

t

d

B

Figure 2. Mixed boundary condition

Cases a) and b) can be regarded as special cases of c), with ∂τ = ∅ (or
∂d = ∅). Prescribing the traction τi = TiANA on ∂τ to be constant is an
example of dead loading. The reason for this is that τ = T · N is actually a
traction vector attached to the current configuration point x. This traction
vector is assigned in advance, independent of x, so the boundary conditions
are simplified considerably.

To complete dynamic problems we must also formulate the initial condi-
tions. We regard x and the velocity ẋ as prescribed at time t = 0:

x = φ0, ẋ = v0.

Equilibrium. As a special case we formulate now the boundary value
problems in elastostatics. The equilibrium equation reads

(49) AiAjBxj,BA + ρ0Bi = 0.

Except that, one of the boundary conditions considered above holds. In case
b) the traction must satisfy the following necessary condition

∫

B0

ρ0B dV +

∫

∂B0

τ dA = 0

which means that the resultant force must be zero. This follows from the
equilibrium equation by integration over B and the use of Gauss’ theorem.
However, in contrast to the linear theory, the resultant moment in the reference
configuration need not be zero

∫

B0

x × ρ0B dV +

∫

∂B0

x × τ dA 6= 0 (in general).

An example is shown in Fig. 3. Of course, in the current configuration the
resultant moment must vanish, as it is always expected in statics.

If the body force and traction are dead (B and τ do not depend on xi),
then the following variational principle holds true in elastostatics: among all
admissible placements the equilibrium placement corresponds to the stationary
point of the energy functional

(50) I[x(X)] =

∫

B0

W (F) dV −
∫

B0

ρ0B · x dV −
∫

∂τ

τ ·x dA.
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Indeed, let us calculate the variation of this energy functional

δI =

∫

B0

∂W (F)

∂F
:Gradδx dV −

∫

B0

ρ0B·δx dV −
∫

∂τ

τ ·δx dA.

Using the constitutive equation (47) we can replace ∂W/∂F by the first Piola-
Krichhoff stress tensor T. Integrating the first term by part and using the
kinematic boundary condition δx = 0 at ∂d we arrive at

δI = −
∫

B0

(DivT + ρ0B)·δx dV +

∫

∂τ

(T · N − τ )·δx dA.

Now, from the equation δI = 0 for arbitrary δx one can easily derive the
equilibrium equation (49) as well as the static boundary condition on ∂τ .

Condition of ellipticity. The quasi-linear differential equations of second
order (48) is classified as elliptic at a point x if

(51) AiAjB(F(x))vivjkAkB ≥ a|v|2|k|2

for all vectors v,k, with a being a positive constant. Eqs. (48) is elliptic
if (51) is fulfilled for all X. The condition of ellipticity is guaranteed by
the positive definiteness of the acoustic tensor and the real wave speeds of
small perturbations. The condition of ellipticity is mathematically equivalent
to the following convexity condition for the stored energy density W (F): if
GiA = vikA is a 3 × 3 rank-1 matrix, then W is strictly convex along the line
joining F and F + G. Indeed, observe that

d2

dλ2
W (F + λG) = AiAjBvivjkAkB.

So, if the condition of ellipticity is fulfilled, then the function f(λ) = W (F +
λG) is strictly convex and vice versa. It is also interesting to note that the
condition of ellipticity implies Baker-Ericksen’s inequalities (see [4]).
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Problem 21. A circular cylinder of reference radius A and length L rotates
about its axis with a constant angular speed ω according to

r = λ−1/2R, θ = Θ + ωt, z = λZ,

where (r, θ, z) and (R,Θ, Z) are cylindrical coordinates of x and X, respec-
tively, and λ is a constant. The cylinder is made of an incompressible Mooney-
Rivlin material. Determine the Cauchy stress tensor.



CHAPTER 4

Some applications

1. Deformation of a cube under tension

We consider an example of homogeneous deformations of a cube of incom-
pressible neo-Hookean material under tension. The prescribed dead traction
is normal to each face of the cube, with a magnitude τ , the same for each face,
as in Fig. 1.

t

t

t

t

t

t

Figure 1. A cube under tension

We take the stored energy function for a homogeneous isotropic elastic
material of the form

W = Ω(λ1, λ2, λ3),

where λ1, λ2, λ3 are the principal stretches. Place the center of the cube at the
origin and consider homogeneous deformations; that is, x = F · X, where F is a
constant 3×3 matrix. In particular, we seek solutions with F = diag(λ1, λ2, λ3)
relative to the rectangular coordinate system whose axes coincide with the axes
of the cube. In Section 3 we have shown that the first Piola-Kirchhoff stress
tensor is diagonal for this type of deformations: T = diag(T1, T2, T3). The
equilibrium equations reduce to

∂T1

∂X1

= 0,
∂T2

∂X2

= 0,
∂T3

∂X3

= 0,

while the boundary conditions read

T1 = T2 = T3 = τ.

45
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Because of the incompressibility condition we must add the term −pF−T

to the first Piola-Kirchhoff stress tensor giving

Ti =
∂Ω

∂λi

− p

λi

,

where p is the pressure, to be determined from the incompressibility condition
J = 1, or, equivalently, λ1λ2λ3 = 1. For a neo-Hookean material

Ω = α(λ2
1 + λ2

2 + λ2
3 − 3),

so

Ti = 2αλi −
p

λi

.

For the neo-Hookean material, ∂Ω/∂λi = 2αλi, a constant, so the equi-
librium equations imply that p is a constant in B0. The boundary conditions
become

2αλ2
1 − p = τλ1,

2αλ2
2 − p = τλ2,

2αλ2
3 − p = τλ3.

Elimination of p gives

[2α(λ1 + λ2) − τ ](λ1 − λ2) = 0,(1)

[2α(λ2 + λ3) − τ ](λ2 − λ3) = 0,(2)

[2α(λ3 + λ1) − τ ](λ3 − λ1) = 0.(3)

Consider now three cases.
Case 1. The λi’s are distinct. Then Eqs. (1),(2),(3) yields τ = 2α(λ1 +

λ2) = 2α(λ2 +λ3) = 2α(λ3 +λ1), which implies λ1 = λ2 = λ3, a contradiction.
Thus, there are no solutions with the λi’s distinct.

Case 2. Three λi’s equal: λ1 = λ2 = λ3. Since λ1λ2λ3 = 1, we get λi = 1
(i=1,2,3) and p = 2α− τ . This is a trivial solution for all τ .

Case 3. Two λi’s equal. Suppose λ2 = λ3 = λ, so λ1 = λ−2. Then Eqs.
(1) and (3) coincide, giving

2α(λ−2 + λ) − τ = 0.

Thus, we need to find the positive roots of the cubic equation

f(λ) = λ3 − τ

2α
λ2 + 1 = 0.

Since f(0) = 1 and f ′(λ) = 3λ(λ−τ/3α), a positive root requires τ > 0. There
will be none if f(τ/3α) > 0, one if f(τ/3α) = 0, and two if f(τ/3α) < 0; see
Fig. 2.

Since f(τ/3α) = −1
2
(τ/3α)3 + 1, there are no positive roots if τ < 3 3

√
2α,

one if τ = 3 3
√

2α, and two if τ > 3 3
√

2α. The larger of these two positive roots
is always greater than unity; the smaller is greater than unity or less than
unity according as 3 3

√
2α < τ < 4α or 4α < τ , respectively. These solutions



2. FORMATION OF MICROSTRUCTURE 47
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Figure 2. Graphs of f(λ) at different τ .
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Figure 3. Bifurcation diagram.

are graphed in Fig. 3, along with the trivial solution λi = 1, τ arbitrary. Thus,
taking the permutations of λ1, λ2, λ3 into account, we get:

a) One solution, namely, λ1 = λ2 = λ3 = 1 if τ < 3 3
√

2α.
b) Four solutions if τ = 3 3

√
2α or τ = 4α.

c) Seven solutions if τ > 3 3
√

2α, τ 6= α.
If we regard τ as a bifurcation parameter, we see that six new solutions are

produced as τ crosses the critical value τ = 3 3
√

2α. This is clearly a bifurcation
phenomenon. Bifurcation of a more traditional type occurs at τ = 4α.

Rivlin shows that the trivial solution is stable for 0 < τ < 4α and unstable
for τ > 4α; the trivial solution loses its stability when it is crossed by the non-
trivial branch at τ = 4α. The three solutions corresponding to the larger root
of f are always stable, and the three solutions corresponding to the smaller
root are never stable. In particular, the nontrivial branch of solutions that
crosses the trivial solution at τ = 4α is unstable both below and above the
bifurcation point.

2. Formation of microstructure

In this Section we want to show that a formation of microstructure at large
deformation is possible for materials having non-convex stored energy density.
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For simplicity let us consider a one-dimensional bar having the length L in the
undeformed state which is subjected to the kinematic boundary conditions (see
Fig. 4)

(4) x(0) = 0, x(L) = a.

X

u

a

x

Figure 4. A bar in a hard device

Assuming that the body force is zero, we find the equilibrium placement
of the bar by minimizing the energy functional

(5) I[x(X)] =

∫ L

0

W (F ) dX,

where F = x,X is the stretch and W (F ) the stored energy per unit cross section
area. Varying this energy functional under the constraints (4) we obtain the
equilibrium equation

(6) T,X = 0, T =
dW

dF
,

with the consequence that the first Piola-Kirchhoff stress is constant along the
bar.

We analyze two possible stress-stretch curves. In the first case the curve is
monotone ascending as shown in Fig. 5. This means that dT/dF = d2W/dF 2 >
0, so, the stored energy is a convex function with respect to F (see Fig. 6). In
this case for each fixed stress T = τ there is only one stretch F = λ. Thus, the
stretch F must also be constant along the bar, and by integrating the equation
x,X = λ using the conditions (4) we get

(7) x =
a

L
X, F =

a

L
.

Putting this solution into the energy functional (5) we obtain the energy of
the bar

(8) E = W (F )L.

In the second case we consider the non-monotone stress-stretch curve shown
in Fig. 7. The stored energy, shown in Fig. 8 is obviously non-convex function
with respect to F . For T > τM and T < τm we can find the corresponding F
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Figure 5. Monotone ascending stress-stretch curve

F

W

Figure 6. Corresponding convex stored energy

uniquely. For each T ∈ (τm, τM) there are three possible stretches F . However,
the descending branch AB in Fig. 8 does not satisfy the stability requirement.
Indeed, the stable solution minimizes the energy functional, so the second
variation of (5) at the solution must be non-negative

δ2I =

∫ L

0

d2W

dF 2
(δx,X)2 dX ≥ 0.

It follows from here

(9)
d2W

dF 2
=
dT

dF
≥ 0,

and the descending branch AB must be discarded. Consequently, if a/L ∈
(λM , λm), then the solution with constant stretch is not possible. Let us admit
that the minimizer has two possible stretches, F = λ1 for X ∈ (0, bL) and
F = λ2 for X ∈ (bL, L), with λ1 and λ2 corresponding to the places where the
horizontal line T = τ intersects the stress-stretch curve. We interpret this as
the co-existence of two phases (or phase mixture) in the bar, with the volume
fraction b and 1− b. We must also satisfy the boundary conditions (4) and the
condition of continuity of x(X) at x = bL. This gives

x(X) = λ1X for X ∈ (0, bL),

x(X) = λ2(X − bL) + λ1bL for X ∈ (bL, L),
(10)
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and

(11) a = [λ1b+ λ2(1 − b)]L,

from which

(12) b =
λ2 − a/L

λ2 − λ1

.
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Figure 7. Non-monotone stress-stretch curve
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W

Figure 8. Corresponding non-convex stored energy

We want to be sure that b lies between 0 and 1, which will be true if

(13) λc
1 ≤ a/L ≤ λc

2,

with λc
1 and λc

2 denoting the places where the horizontal tangents to the graph
again intersect the graph. The energy becomes a function of λ1, λ2 and b

(14) E = [W (λ1)b+W (λ2)(1 − b)]L.

We want to minimize this expression with respect to b. The differential of E
is equal to

(15) dE = [b
dW

dλ1

dλ1 +W (λ1)db+ (1 − b)
dW

dλ2

dλ2 −W (λ2)db]L.

We already know that, for some value T = τ , we must have

dW

dλ1

=
dW

dλ2

= τ,
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and from (11), we must have

bdλ1 + (1 − b)dλ2 = (λ2 − λ1)db.

Using these, we can simplify (15) to get the condition for a minimum as

(16) dE = [W (λ1) −W (λ2) − τ(λ1 − λ2)]db ≥ 0.

There are then three possibilities. If b = 0 (end-point minimum), then
db ≥ 0 and

W (λ1) −W (λ2) − τ(λ1 − λ2) ≥ 0.

Similarly, if b = 1 (end-point minimum), then db ≤ 0 and

W (λ1) −W (λ2) − τ(λ1 − λ2) ≤ 0.

Finally, for b ∈ (0, 1), db can be positive or negative, so

W (λ1) −W (λ2) − τ(λ1 − λ2) = 0.

The expression standing in the left-hand side of these conditions has a
quite nice geometric interpretation in terms of the stress-stretch curve. We are
concerned with values of τ such that the horizontal line T = τ intersects this
graph in three places, as indicated by Fig. 9. Let A1 denote the hatched area

Flll

T

t

1 23

A

A

1

2

Figure 9. The stress-stretch curve, hatching indicating two ar-
eas associated with the horizontal line T = τ

between λ1 and λ3. It is given by

A1 =

λ3
∫

λ1

T (F ) dF − τ(λ3 − λ1) = W (λ3) −W (λ1) − τ(λ3 − λ1).

Similarly, the other hatched area, A2, is given by

−A2 = W (λ2) −W (λ3) − τ(λ2 − λ3).

Thus

A1 − A2 = W (λ2) −W (λ1) − τ(λ2 − λ1).
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With these results, it is easy to determine the minimum of energy which is
achieved at b = 0 when a/L > λ∗2, at b = 1 when a/L < λ∗1, and at b given by

(17) b =
λ∗2 − a/L

λ∗2 − λ∗1

when a/L ∈ (λ∗1, λ
∗
2). Here λ∗1 and λ∗2 are the places where the Maxwell line of

equal area (A1 = A2) intersects the stress-stretch curve. It is also interesting
to note that the average energy E(a/L)/L coincides with the convex hull of
the stored energy W c(a/L) (see Fig. 10)

(18) W c(a/L) = min
x(X)∈(4)

1

L

∫ L

0

W (F ) dX.

Note also that the minimizer found above is not unique. We can easily con-
struct an infinite number of phase mixtures with many interfaces. However, if
one takes into account that each interface possesses a small but finite surface
energy, then the number of interfaces cannot be infinite because it would be
energetically unfavorable.

F

ll

W

1 2

* *

Figure 10. The convex hull of the stored energy W (F )

The 2-D and 3-D cases are still far from being solved and remain an active
research area in recent years (see [7, 8]).

Problem 22. Given the stored energy W (F ) of the form

W (F ) = µ(−33F + 26.0833F 2 − 7.33333F 3 + 0.708333F 4).

Plot the graph of this function and the stress-stretch curve. Find (λM , τM),
(λm, τm) and the Maxwell line T = τ∗ of equal area.

3. Moving discontinuities

Let us assume now that the bar is suddenly loaded by some impact load.
Then shock waves as well as phase interfaces may occur and move along the
bar. We are going to model them as the moving discontinuities. The motion
of the bar is described by the equation

x = φ(X, t) = X + u(X, t), X ∈ [0, L].
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If φ(X, t) is continuously differentiable, then we let

F = φ′, v = φ̇

denote stretch and particle velocity, respectively. Provided body forces are
absent, the equation of motion reads

(19) ρ0v̇ = T ′.

This equation is valid at points (X, t) where F and v are smooth. Besides, the
following compatibility condition must also be fulfilled

(20) v′ − Ḟ = 0.

If φ(X, t) is continuous, but F and v are discontinuous across the curve
X = s(t) in the X, t-plane, then Eqs. (19) and (20) are no longer valid at this
front of discontinuity. We are going to derive the jump conditions at the curve
s(t). Because φ(X, t) is continuous

(21) [[φ]] = 0,

where [[φ]] denotes the jump of the function φ(X, t)

[[φ]] = φ(s(t) + 0, t) − φ(s(t) − 0, t).

Differentiating φ(s(t) ± 0, t) with respect to t, we obtain

d

dt
φ(s(t) + 0, t) = F+ṡ+ v+,

d

dt
φ(s(t) − 0, t) = F−ṡ+ v−,

where the indices ± denote the limiting values on the front and back sides.
Thus,

(22)
d

dt
[[φ]] = [[F ]]ṡ+ [[v]] = 0.

This is the kinematic jump condition.
We apply now the balance of momentum in the integral form to the piece

[X1, X2] of the bar

(23)
d

dt

∫ X2

X1

ρ0v dX = T |X2

X1
,

with X1 and X2 chosen so that, at a particular time, X1 < s(t) < X2. Recall
that ρ0 is a constant. Since v has a jump at X = s(t), we decompose the
integral on the left-hand side into two integrals yielding

d

dt
(

∫ s

X1

ρ0v dX+

∫ X2

s

ρ0v dX) =

∫ X2

X1

ρ0v̇ dX+ρ0v(s(t)−0, t)ṡ−ρ0v(s(t)+0, t)ṡ,

or
d

dt

∫ X2

X1

ρ0v dX =

∫ X2

X1

ρ0v̇ dX − ρ0[[v]]ṡ.
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Putting this back in (23) and taking the limit as X1 → s(t) − 0 und X2 →
s(t) + 0, we obtain

(24) ρ0[[v]]ṡ+ [[T ]] = 0.

This is the consequence of the balance of momentum at the front of disconti-
nuity.

By a similar analysis, the balance of energy

d

dt

∫ X2

X1

(E +
1

2
ρ0v

2) dX,= (Tv +Q)|X2

X1

with E being the internal energy density and Q the heat flux, gives rise to

(25) [[E +
1

2
ρ0v

2]]ṡ+ [[Tv +Q]] = 0.

Finally, from the Clausius-Duhem inequality

d

dt

∫ X2

X1

N dX ≥ (Q/Θ)|X2

X1

with N being the entropy and Θ the absolute temperature, one can derive

−[[N ]]ṡ ≥ [[Q/Θ]].

Now, using (22), we can reduce (24) to

ρ0ṡ
2 = [[T ]]/[[F ]],

from which it is clear that [[T ]] and [[F ]] cannot have opposite signs.
Now, using (22) and (24), we have

[[Tv]] = T+v+ − T−v−

=
T+ + T−

2
(v+ − v−) +

T+ − T−

2
(v+ + v−)

=
T+ + T−

2
[[v]] − ρ0ṡ

2
(v+ − v−)(v+ + v−)

= −T
+ + T−

2
ṡ[[F ]] − ṡρ0[[v

2]]

2
.(26)

With this identity, (25) reduces to

(27) ([[E]] − T+ + T−

2
[[F ]])ṡ = −[[Q]].

The constitutive equation for a thermoelastic material is assumed to be of
the form

T = T̂ (F,Θ) =
∂W

∂F

∣

∣

∣

∣

Θ

,

where W = ρ0(E − ΘN) is the free energy per unit volume. We consider
the motion of a piece [X1, X2] of the bar within the time interval (t1, t2). We
assume that Θ = const (isothermal process) and that F and v are continuous,
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except at the moving front X = s(t) of discontinuity. The total energy stored
in this piece at time t is equal to

E(t) =

∫ X2

X1

[W (F (X, t),Θ) +
1

2
ρ0v

2(X, t)]AdX.

We calculate the rate of change of E/A

Ė(t)/A =
d

dt

∫ X2

X1

(W (F,Θ) +
1

2
ρ0v

2) dX.

Because of the moving front of discontinuity X = s(t) we must decompose the
integral into two integrals. We obtain

Ė(t)/A =

∫ s

X1

(T Ḟ + ρ0v̇v) dX +

∫ X2

s

(T Ḟ + ρ0v̇v) dX − [[W +
1

2
ρ0v

2]]ṡ.

Replacing Ḟ by v′ and integrating the first two integrals by parts, we get

Ė(t)/A = Tv|X2

X1
− [[Tv]] − [[W +

1

2
ρ0v

2]]ṡ.

With (26), this yields

(28) Ė(t)/A = Tv|X2

X1
− ([[W ]] − T+ + T−

2
[[F ]])ṡ.

We introduce the following notation

(29) f = [[W ]] − T+ + T−

2
[[F ]]

and call f the driving force acting on the moving discontinuity. The first term
in the right-hand side of (28) is the power of external forces acting on the
piece of the bar, the second term, which is fṡ, would then represent the rate
of dissipation of mechanical energy associated with the moving discontinuity.
We want to show now that this dissipation rate is non-negative. Indeed, it
follows from Eq. (27) that

([[W ]] − T+ + T−

2
[[F ]])ṡ = Θ(−[[N ]]ṡ− [[Q/Θ]]) ≥ 0.

Note that this inequality is proved only for the isothermal processes. When the
discontinuity front moves slowly, then this is a good approximation of the real
process. However, for the shock waves moving with the velocity comparable or
faster than the sound speed, the process becomes more or less adiabatic, and
the positiveness of the dissipation rate have to be checked again.

The dynamic driving force has a very nice geometric interpretation in terms
of the stress-stretch curve shown in Fig. 11. According to the formula (29) the
dynamic driving force f is equal to f = A1−A2, where A1 and A2 the hatched
areas in this figure.

There are two kind of moving discontinuities. When F± belong to one
branch of the stress-stretch curve, the moving discontinuity is called shock
wave. In contrary, the moving discontinuity is called phase interface if F±
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Figure 11. The dynamic driving force

belong to two different branches. From Fig. 11 one can see that the velocity
of shock wave is normally much higher than the velocity of phase interface.

For shock waves we normally assume that the process is adiabatic

Q = 0.

Then it follows from (27)

[[E]] =
T+ + T−

2
[[F ]].

In the theory of shock waves this relation is known as Rankine-Hugoniot equa-
tion.

Problem 23. Given the stored energy as in Problem 22. Besides, the
stretches on the front and back sides of the moving phase interface are known:
F− = 1, F+ = 4. Find the velocity of the phase interface ṡ and the dynamic
driving force f .
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